
Kafka:
CONSUMER
CONCEPT

The general Kafka design puts a lot of responsibility
to its producers, but also to its consumers.

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

2

KAFKA CONSUMERS

Lets understand …

§ How to consume data from Kafka?
§ Why using a consumer group?
§ How to scale consumtion?
§ Some Consumer configurations.

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

3

HOW TO CONSUME
DATA FROM KAFKA01

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

4

SET UP A CONSUMER…

§ Create a Java Properties instance (with some properties)…

§ 3 mandatory Consumer properties:
§ bootstrap.servers (for cluster connection)
§ key.deserializer (first part of a Kafka record)
§ value.deserializer (second part of a Kafka record)

§ Now you can subscribing to a Topic… ©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

5

HOW A CONSUMER READS MESSAGES

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

6

§ Calling a poll() will returns records from a topic to a consumer
§ Kafka allows consumers to track their position (offset) in each partition.
§ There is a default way of tracking which records were read by a

consumer (enable.auto.commit=true).
§ A consumer commit an offset back to a special __consumer_offsets topic.

WHY USING A
CONSUMER GROUP?02

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

7

CONSUMER GROUPS

§ A consumer group is the technical equivalent to a data sink
(e.g. an application, target system, …).

§ Each Kafka partition, will be consumed by exactly one consumer.
§ Each Kafka partition, will also be consumed by exactly one consumer per

consumer group.
§ Consumer Groups is a concept for scaling consumption.

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

8

CONSUMER GROUPS

§ Having two separated consumers for one technical data sink, would lead
to duplicated messages in the target system.

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

9

CONSUMER GROUPS

§ Separated consumers (outside a group) or two consumer groups,
are meant to be used for different sink-applications; not for scaling.

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

10

CONSUMER GROUPS

§ Separated consumers (outside a group) or two consumer groups,
are meant to be used for different sink-applications; not for scaling.

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

11

SCALING
CONSUMER03

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

12

SCALING WHITH CONSUMER GROUPS –
GOOD TO KNOW

§ To scale the workload on the consumer side: simply add an additional
consumer to a group.
§ This can be done by registering a new consumer with an existing

group.id (consumer configuration)
§ The new consumer will connect to the Group Coordinator of that

existing group à see also: poll() loop
§ Kafka will manage the rest…

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

13

Consumer properties example
props.put("bootstrap.servers", "broker1:9092,broker2:9092");
props.put("group.id", “ExampleGroup");
props.put("key.deserializer","org.apache.kafka.common.serialization.
StringDeserializer");
props.put("value.deserializer","org.apache.kafka.common.serialization.
StringDeserializer");

SCALING WHITH CONSUMER GROUPS –
GOOD TO KNOW

§ Good to know… Adding a new consumer to an existing group…
§ The new consumer will start consuming messages from partitions

previously consumed by another consumer(s)
§ moving partition ownership from one consumer to another is called

a rebalance.
§ Rebalances provide the consumer group with higher availability and

scalability (allowing to add and remove consumers)
§ During a rebalance, consumers cannot consume messages
§ A rebalance is a short window of unavailability of the entire consumer

group. ©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

14

SCALING WHITH CONSUMER GROUPS –
GOOD TO KNOW

§ Scaling to a number of consumers (per group) that is higher than the
number of a topic´s partitions à makes no sense!
§ Remember: Each partition will be consumed by exactly one consumer

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

15

CONSUMER
CONFIGURATIONS04

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

16

CONSUMER – EXAMPLES OF CONFIGURATIONS

§ Offset Configurations
§ enable.auto.commit=true (default)
à if you need End2End process guaranty and avoid duplicated
messages, you might want to control that commit yourselfe or
even store the offset outside Kafka

§ auto.commit.interval.ms=5000 (5 Sec. default)
à if enable.auto.commit=true, make shure that this config is fitting
your use case

§ auto.offset.reset=latest (default)
à read the newest record first when reading a partition without a
valid offset; „earliest“ would start with the oldest offset

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

17

CONSUMER – EXAMPLES OF CONFIGURATIONS

§ Data Load/Network related Configurations
§ fetch.max.wait.ms=500 (default)
à how long the consumer will wait to poll()

§ fetch.min.bytes=1 (default)
à Kafka will wait until it has enough data before responding to
the consumer (can be used to reduce network communication)

§ max.poll.records=500 (default)
à controlls the number of records per call

§ max.partition.fetch.bytes= 1048576 (1MB default)
à maximum number of bytes the server will return per partition

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

18

CONSUMER – EXAMPLES OF CONFIGURATIONS

§ partition.assignment
§ partition.assignment.strategy – will be done by the „group leader“
§ By this, the consumer can decide how partitions are distributed

between consumers of a group.
§ (...).RangeAssignor – might distribute partitions more unbalanced

(default) when having more than one topic per consumer group
§ (...).RoundRobinAssignor – distributing number of partitions more

evenly when having more than one topic per consumer group

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

19

CONSUMER – EXAMPLES OF CONFIGURATIONS

§ session.timeout.ms=45.000 (45 Sec. default)
à timeout before a consumer is considered to be offline (without a
heartbeat); Note: the time out window on the Broker is configured
with:
§ group.min.session.timeout.ms=6.000 (6 Sec. default)
§ group.max.session.timeout.ms=1.800.000 (30 Min default)

§ heartbeat.interval.ms (3 Sec. default)
à connection between a consumer and the group coordinator

§ group.id à define your own consumer group ©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

20

QUIZ05

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

21

QUIZ – Example 1

Given:
§ Topic with 2 partitions and a group with 2 consumers; Both have…
§ enable.auto.commit=true
§ auto.commit.interval.ms=5 Sec.
§ Poll() every 3 Sec

§ Then one Consumer looses connection for at least 46 sec. …
§ What will happen?
§ What can happen?

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

22

QUIZ – Example 2

Given:
§ Topic with 2 partitions and a group with 1 consumer
§ enable.auto.commit=true
§ auto.commit.interval.ms=5 Sec.
§ Poll() every 3 Sec

§ Then another Consumer joins the group…
§ What will happen?
§ What can happen?

©
 D

ee
ps

ho
re

Gm
bH

 · 2
02

3

23

CONTACT
Deepshore GmbH · Van-der-Smissen-Straße 9, 22767 Hamburg
Telefon +49 40 46664-296 · Fax +49 40 46664-299
E-Mail info@deepshore.de · www.deepshore.de

Who said:
CONSUMER
CONCEPT IS
EASY?

mailto:info@deepshore.de
http://www.deepshore.de/

